Trials and limits of automation: Experiences from the Zimmerwald well characterized and fully automated SLR-system P. Lauber, M. Ploner, M. Prohaska, P. Schlatter, P. Ruzek, T. Schildknecht, A. Jäggi Swiss Optical Ground Station and Geodynamics Observatory Zimmerwald, Astronomical Institute, University of Bern, Switzerland 20th International Workshop on Laser Ranging, October 12th, 2016, Potsdam ## **Hardware Communication Layout** Day and night ON ## **Automated Devices** ``` 2: OFLIPFLOPE 1: OABSENKUNG 3: OFLIPFLOPW 4: OIN_HUMID 5: OIN_TEMP 6: OPARKPOS 7: A0321_INIT 8: A0321_SYNC 9: A0322_INIT 10: A0322_SYNC 11: ABSENKUNG 12: AZI_NULLPT 13: AZ_HEATER 14: AZ_HUMID 15: AZ_H_MON 16: AZ_TEMP 17: A_MIRROR 18: BEAM_CAM 19: CABLE_TEMP 20: CAL_WINDOW 22: CAMAC_PC 21: CAMAC 23: CAMAC_PWR 24: CAMTRIGEN 25: CCDZMDX 27: CFD_CONT 28: CHILL_COND 26: CC_BEEPER 29: CHILL_FLOW 30: CHILL_TEMP 31: CM_SHUTTER 32: CNTR_TEMP 33: CONST_FLZT 34: COOLING 35: COUNTER_01 37: COUNTER_03 38: CP1_DRIVE 36: COUNTER_02 39: CP1_POWER 40: CP1_WHEEL 41: CP2_DRIVE 42: CP2_POWER 43: CP2_WHEEL 44: CP3_DRIVE 45: CP3_POWER 48: CP4_POWER 46: CP3_WHEEL 47: CP4_DRIVE 49: C_SHUTTER 50: DAY_TV 52: DECIMATE 53: DELPHINUS 54: DETECTORS 55: DIVERGENCE 51: DBS 56: DIV_OK 57: DIV_RST 58: DM_DRIVE 59: DOME 60: DOME_FAN 61: DOME_LIGHT 62: DOME_NCLOS 63: DOME_SPOT 64: DOMW_NCLOS 65: FO_DELAY 66: FO_PERCORR 67: FO_PERIOD 68: FP_GR 69: FREQ3_INIT 70: F_SHUTTER 71: GPS_DIFF_B 72: HWI_NULLPT 73: LASER 74: LASER_GR 75: LASER_IR 76: LRO_CORR 77: LSH_INH 79: LS_CHILLER 78: LS_AIRTEMP 80: LS_COOLTMP 81: LS_DI_0 82: LS_LASTEMP 83: LS_MEDOX 84: LS_OSCTEMP 85: LS_WARN 86: L_SHUTTER 87: L_SHUTT_GR 88: L_SIMUL 89: M2_FLUSH 90: MANCOR_X 91: MANCOR_XO 92: MANCOR_Y 93: MANCOR_YO 94: MAN_MODE 95: MASER1PS1 96: MASER1PS2 98: MASERV1BA 100: MASERV1PS 97: MASERTEST 99: MASERV1IN 102: MASERV2IN 101: MASERV2BA 103: MASERV2PS 104: METEO_FAN 105: ML_DRIVE |106: MOTION_DET 107: NDFILT_GR 108: NDFILT_IR 109: ND_CALFILT 110: OBS_WINDOW |111: OUT_HUMID | 112: OUT_PRESS 113: OUT_TEMP 114: P1_P2 115: PINHOLE PWR_FAIL_2 118: PWR_LABPC 119: R1_SHUTTER 120: R2_SHUTTER |116: PWR_FAIL_1 117: 121: R3_SHUTTER 122: RACK_TEMP 123: RADAR 124: RADAR_TEST 125: RAINSENSOR 126: RA_TUNE RA_TUNE_OK 128: ROT_CONFL 129: ROT_SHUTC 130: ROT_SHUTE 131: ROT_SHUTL 132: ROT_SHUTON 133: ROT_SH_CL 134: ROT_SH_OP 135: ROT_SH_RST 138: R_SWITCH_1 139: R_SWITCH_2 140: SAT_RGTOFF |136: RR_WINDOWS 137: R_GATE |141: SEN_CLK_S 142: SI1100 143: STAN3_INIT 144: STAN_FREQ3 145: START_OK 146: STOP_DOME 147: SUN_ANGLE 148: SUN_COVER 149: SUN_C_STAT 150: TEL_BRAKES 151: TEL_LAMP 152: TEMP_FORK 153: TEMP_M1 154: TEMP_PFI 155: TEMP_TUBE 156: TILT_HOR 157: TILT_PWR 158: TILT_VER 159: TR_M_LOCK 160: TR_REMOTE 162: TUBE_FAN 161: TR_STROBE 163: TUBE_HEAT 164: V1_KEY 165: VND_GR_OK 166: VND_IR_OK 167: W_PRESS 168: ZIMDATAPC2 169: ZIMLAT ``` - ~165 Devices - **Moving Devices:** Matching Lens, **Divergence Optics** - On/Off Devices: Laser Shutter, Tube Fan - Read-only Devices: Humidity Sensor, Maser In Voltages - **Design Rules:** - MTBF: long lifetime, - less maintenance ## Pierre Lauber: Trials and limits of automation: Experiences from the Zimmerwald well 20th International Workshop on Laser Ranging, October 12th, 2016, Potsdam characterized and fully automated SLR-system ## Example: Some Devices... ## **Software Maintenance** Linux is your friend here ## Philosophies - Upgrading old, in order to maintain automation - Writing new, which automates new things, e.g. Envisat data processing - ~300.000 lines Fortran77 source code, under revision control, some «minor» not - Design Rules: - less maintenance, use (**IX) standard interfaces - simple expansible - BTW: Use host- and usernames carefully... 20th International Workshop on Laser Ranging, October 2016, Potsdam ## Software Porting ### **Motivation:** - Old code has less bugs! - development very bad under DOS ## Software interfaces: - text terminal/keyboard-based, - TCP/IP network, only one X11 application (pgplot) for residuals, - byte code protocols (e.g. Modbus) network ## Hardware interfaces: - EPP, ISA - Video graphics: If uses only text: API adapted to use neurses calls F10 Display telescope status F12 Back to BASH F11 Wait for station computer connection ## PC Hardware Maintenance and Porting Idea: hardware redundancy, no complete new system, replace single components only ## PCs Maintenance (copying): - Station Control: made a virtual machine - DAQ: almost cloned, lacks a print card - Telescope: cloned - Laser: program copied onto new PC and OS (Windows) ## Porting DOS to Linux - ISA port/memory mapped access seem to work first time as user root, or Linux driver - last interesting tests in real environment come up... difficult: timing restrictions if any Btw: Mixed experiences with new (all-in-one) SPS ## Trials and limits of automation: Experiences from the Zimmerwald well Potsdam October 20th International Workshop on Laser Ranging, and fully automated SLR-system Pierre Lauber: ## **Limits of Automation** ## frequent - optics cleaning - replacing: fans, power supplies, batteries ### rare - receive path: Fabry-Pérot adjustment - Maser frequency drift correction ## automation: Experiences Ranging, -system ## Night Tracking Camera - Like in the earlier days of SLR: Point to HEO sat., between laser pulses take a photo, evaluate photo: find HEO sat., calculate deviation, move telescope directly to sat. position - Digital Camera Neo sCMOS (Andor) evaluated: should fit purpose - **Exposure Timing works** - Light shade pipe required - laser light filtering: Additional filter for IR too seems to solve - Implementing Software of image processing continues... - analogue technique was so easy... ## Safety of Low Energy Tracking - ... should be fully automated and should be fully secure - Potsdam Targets: ISS (ELT: 0.1 mJ), Sentinel-3A, ... - for standard tracking: Why do we need so much energy at all? RegenOut 0.4mJ@532nm and 100Hz enough for all LEOs incl. Lageos (see also other publications...) - currently, everything depends on the satellite name only - one software problem should not affect safety!: - second software variable from second data channel required? (like Go/NoGo-Flag) - **Energy measurement in real-time:** Ulbricht Sphere + Photo Diode: less precision compared to thermal sensor: to be checked again - divergence control seems to be reliable measurements continue when at 8mJ again # s and limits of automation: Experiences from the Zimmerwald well 20th International Workshop on Laser Ranging, fully automated SLR-system ## Excursion: Frequency Stability for ELT - SLR Zimmerwald is phase locked to the Maser since 9.8.2016, 15:20 UTC - Maser frequency drift is corrected manually: 1PPS Difference of GPS to the Maser is at the measurement precision of the GPS-receiver (res30ns/acc165ns) - METAS (Time and Frequency Lab, located 8 km from station) checks for optical link between its Caesium fountain and station ## Safety for European Laser Time Transfer (ELT) Paper: "..ELT and Laser Safety for the ISS", U. Schreiber et al., 2013 Some checks for our system specific implementation: - Easy to program: For ISS, switch CM_SHUTTER (located after energy measurement) ON (to open) if laser energy is less than... - Mains Power Off/On Scenario and UPS (to be checked again): - Control-PCs have UPS, UPS can work contrary to safety - laser power supply and chiller have no UPS, - Shutters should be closed by gravity (currently by springs) - Micro switches at Divergence Optics: seems to be a good idea - Amplifier gain reduction: - Delay between Amp pumping and laser pulse + polarizer attenuator might work - Switching off Post-Amps: Amps not at thermal operating point: For fully automated operation, have to be back in stable operation condition after ISS passage: switching off Amps might be a bad idea ## **New Systems** ## Idea: New technology: Carbon-Fibre-Tube: high stiffness, cheaper - Used for Space Debris, not yet for SLR, ok, equatorial mount is bad for SLR ... - other motion controller: completely new, first version software, some minor source code imported from old system - Camera readout "PCs": low power SBCs at telescope axis: Cubietruck, no mechanics (less maintenance): no active cooling/fan, flash/SSD memory, a lot of similar boards available: to be evaluated - Satellite pointing at arc sec precision, development affected already others - For SLR some is missing: e.g. Sun avoidance and timing precision! ## Conclusion - Think carefully about what you're going to implement, for both hardware and software! - A lot of work to do... Thank you very much for your attention! ## Two new Towers for new Telescopes ## Backup - ZIMLAT-Telescope used for - Geodesy (SLR) and - **Imaging (Space Debris)** - Hybrid design is difficult: optical compromise - ELT: Event-Timing: Dassault-Elements required? We don't want to buy such expensive devices... ## Time Transfer Principle SLR in parallel On-Board Clock Stop Aptrono Maigal In Stitute University of Berlu Seminar at IAP: Laser Physics, ## Excursion: The used Clock in Space ## **ACES (Atomic Clock Ensemble in Space)** - cold atoms in microgravity - Combination of cold Caesium clock and H-Maser: - test of PHARAO frequency stability 10⁻¹³xτ^{-1/2} and accuracy 3x10⁻¹⁶ - test of SHM frequency stability 2.1x10⁻¹⁵ @ 1000 s ## **Applications in Fundamental Physics** - gravitational red-shift - drift in fine structure constant - anisotropy of light Pharao prototype in CNES ZeroG ## Time Transfer Predecessors: simple clocks - T2L2: Operated by France, OCA and CNES - On-board Clock (USO) no longer State-of-the-Art - At end of lifetime - Since years precision evaluation: Allan-Variance: about 1ps: optical transfer much better than RF ones - Data on request (see http://www.geoazur.fr/t2l2/en/data/v4/ Ground to Space section: 1 Triple data files tar-ball/ 1 day) - A lot of published papers - LRO: Lunar Reconnaissance Orbiter (NASA), spacecraft around the moon (mission ended) - Requires enough energy, good weather conditions and schedule - Precision data NASA proprietary? ## **ELT: European Laser Time Transfer uses ACES** ## **ELT difficulties:** - Operated by ESA via NASA via ISS-operators, - ACES launch scheduled for 2016, - Not yet operating, - ISS operated -2020? - Successor project of T2L2, in principal similar, new: - improved detector-retro-package, ready for launch, pre-flight experiments and papers well-known - The best On-board Clock ever: ACES - ESA requirement: Ground-Data-Infrastructure ready before Hardware launch - **SLR-Stations** - locked to Maser: Time comparisons can be made ## ELT objectives (a copy from an ELT workshop..) ## **Clock Comparisons and Time Transfer** - Space-to-ground comparisons of clocks reaching a TDEV of 4 ps between 300 s and 104s of integration time, better than 7 ps on the long-term - common view comparisons below 6 ps per ISS pass - Non-common view comparisons below 6 ps after 2000 s of dead time - Space-to-ground and ground-to-ground synchronization of clocks ## **Laser Ranging** - Laser ranging performance at the centimetre level per single shot (50 ps one-way) - Comparison of ranging techniques: one-way optical ranging, twoway optical ranging, microwave ranging - Analysis of atmosphere propagation delays